Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides
نویسندگان
چکیده
Cyclic nucleotide-gated (CNG) channels in retinal photoreceptors play a crucial role in vertebrate phototransduction. The ligand sensitivity of photoreceptor CNG channels is adjusted during adaptation and in response to paracrine signals, but the mechanisms involved in channel regulation are only partly understood. Heteromeric cone CNGA3 (A3) + CNGB3 (B3) channels are inhibited by membrane phosphoinositides (PIP(n)), including phosphatidylinositol 3,4,5-triphosphate (PIP(3)) and phosphatidylinositol 4,5-bisphosphate (PIP(2)), demonstrating a decrease in apparent affinity for cyclic guanosine monophosphate (cGMP). Unlike homomeric A1 or A2 channels, A3-only channels paradoxically did not show a decrease in apparent affinity for cGMP after PIP(n) application. However, PIP(n) induced an ∼2.5-fold increase in cAMP efficacy for A3 channels. The PIP(n)-dependent change in cAMP efficacy was abolished by mutations in the C-terminal region (R643Q/R646Q) or by truncation distal to the cyclic nucleotide-binding domain (613X). In addition, A3-613X unmasked a threefold decrease in apparent cGMP affinity with PIP(n) application to homomeric channels, and this effect was dependent on conserved arginines within the N-terminal region of A3. Together, these results indicate that regulation of A3 subunits by phosphoinositides exhibits two separable components, which depend on structural elements within the N- and C-terminal regions, respectively. Furthermore, both N and C regulatory modules in A3 supported PIP(n) regulation of heteromeric A3+B3 channels. B3 subunits were not sufficient to confer PIP(n) sensitivity to heteromeric channels formed with PIP(n)-insensitive A subunits. Finally, channels formed by mixtures of PIP(n)-insensitive A3 subunits, having complementary mutations in N- and/or C-terminal regions, restored PIP(n) regulation, implying that intersubunit N-C interactions help control the phosphoinositide sensitivity of cone CNG channels.
منابع مشابه
Molecular Mechanisms for Phosphoinositide Regulation of Cone Photoreceptor Cng Channel Gating
By Gucan Dai, Ph.D. Washington State University May, 2014 Chair: Michael D. Varnum Photoreceptor cyclic nucleotide-gated (CNG) channels are critical for converting light inputs into electrical signals that are ultimately processed as visual information. However, it is not well understood how exactly photoreceptor CNG channels are regulated. Since the first study showing the direct activation of...
متن کاملCNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions.
Cyclic nucleotide-gated (CNG) channels are critical for sensory transduction in retinal photoreceptors and olfactory receptor cells; their activity is modulated by phosphoinositides (PIPn) such as phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). An achromatopsia-associated mutation in cone photoreceptor CNGA3, L633P, is located in a carboxyl (COO...
متن کاملRegulation of human cone cyclic nucleotide-gated channels by endogenous phospholipids and exogenously applied phosphatidylinositol 3,4,5-trisphosphate.
Cyclic nucleotide-gated (CNG) channels are critical components of the vertebrate visual transduction cascade involved in converting light-induced changes in intracellular cGMP concentrations into electrical signals that can be interpreted by the brain as visual information. To characterize regulatory mechanisms capable of altering the apparent ligand affinity of cone channels, we have expressed...
متن کاملSubunit Configuration of Heteromeric Cone Cyclic Nucleotide-Gated Channels
Cone photoreceptor cyclic nucleotide-gated (CNG) channels are thought to be tetrameric assemblies of CNGB3 (B3) and CNGA3 (A3) subunits. We have used functional and biochemical approaches to investigate the stoichiometry and arrangement of these subunits in recombinant channels. First, tandem dimers of linked subunits were used to constrain the order of CNGB3 and CNGA3 subunits; the properties ...
متن کاملCanine CNGA3 Gene Mutations Provide Novel Insights into Human Achromatopsia-Associated Channelopathies and Treatment
Cyclic nucleotide-gated (CNG) ion channels are key mediators underlying signal transduction in retinal and olfactory receptors. Genetic defects in CNGA3 and CNGB3, encoding two structurally related subunits of cone CNG channels, lead to achromatopsia (ACHM). ACHM is a congenital, autosomal recessive retinal disorder that manifests by cone photoreceptor dysfunction, severely reduced visual acuit...
متن کامل